Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 6.4 : Solving Logarithm Equations
Solve each of the following equations.
- \({\log _4}\left( {{x^2} - 2x} \right) = {\log _4}\left( {5x - 12} \right)\) Solution
- \(\log \left( {6x} \right) - \log \left( {4 - x} \right) = \log \left( 3 \right)\) Solution
- \(\ln \left( x \right) + \ln \left( {x + 3} \right) = \ln \left( {20 - 5x} \right)\) Solution
- \({\log _3}\left( {25 - {x^2}} \right) = 2\) Solution
- \({\log _2}\left( {x + 1} \right) - {\log _2}\left( {2 - x} \right) = 3\) Solution
- \({\log _4}\left( { - x} \right) + {\log _4}\left( {6 - x} \right) = 2\) Solution
- \(\log \left( x \right) = 2 - \log \left( {x - 21} \right)\) Solution
- \(\ln \left( {x - 1} \right) = 1 + \ln \left( {3x + 2} \right)\) Solution
- \(2\log \left( x \right) - \log \left( {7x - 1} \right) = 0\) Solution