If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.
Chapter 6 : Exponential and Logarithm Functions
Here are a set of assignment problems for the Exponential and Logarithm Functions chapter of the Algebra notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.
If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.
Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.
Exponential Functions – In this section we will introduce exponential functions. We will give some of the basic properties and graphs of exponential functions. We will also discuss what many people consider to be the exponential function, \(f(x) = {\bf e}^{x}\).
Logarithm Functions – In this section we will introduce logarithm functions. We give the basic properties and graphs of logarithm functions. In addition, we discuss how to evaluate some basic logarithms including the use of the change of base formula. We will also discuss the common logarithm, \(\log(x)\), and the natural logarithm, \(\ln(x)\).
Solving Exponential Equations – In this section we will discuss a couple of methods for solving equations that contain exponentials. p>
Solving Logarithm Equations – In this section we will discuss a couple of methods for solving equations that contain logarithms. Also, as we’ll see, with one of the methods we will need to be careful of the results of the method as it is always possible that the method gives values that are, in fact, not solutions to the equation.
Applications – In this section we will look at a couple of applications of exponential functions and an application of logarithms. We look at compound interest, exponential growth and decay and earthquake intensity.