If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.
Chapter 6 : Applications of Integrals
Here are a set of assignment problems for the Applications of Integrals chapter of the Calculus I notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.
If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.
Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.
Average Function Value – In this section we will look at using definite integrals to determine the average value of a function on an interval. We will also give the Mean Value Theorem for Integrals.
Area Between Curves – In this section we’ll take a look at one of the main applications of definite integrals in this chapter. We will determine the area of the region bounded by two curves.
Volumes of Solids of Revolution / Method of Rings – In this section, the first of two sections devoted to finding the volume of a solid of revolution, we will look at the method of rings/disks to find the volume of the object we get by rotating a region bounded by two curves (one of which may be the \(x\) or \(y\)-axis) around a vertical or horizontal axis of rotation.
Volumes of Solids of Revolution / Method of Cylinders – In this section, the second of two sections devoted to finding the volume of a solid of revolution, we will look at the method of cylinders/shells to find the volume of the object we get by rotating a region bounded by two curves (one of which may be the \(x\) or \(y\)-axis) around a vertical or horizontal axis of rotation.
More Volume Problems – In the previous two sections we looked at solids that could be found by treating them as a solid of revolution. Not all solids can be thought of as solids of revolution and, in fact, not all solids of revolution can be easily dealt with using the methods from the previous two sections. So, in this section we’ll take a look at finding the volume of some solids that are either not solids of revolutions or are not easy to do as a solid of revolution.
Work – In this section we will look at is determining the amount of work required to move an object subject to a force over a given distance.