Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.
If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.
If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.
Section 9.6 : Polar Coordinates
- For the point with polar coordinates \(\displaystyle \left( { - 9,\frac{{3\pi }}{7}} \right)\) determine three different sets of coordinates for the same point all of which have angles different from \(\displaystyle \frac{{3\pi }}{7}\) and are in the range \( - 2\pi \le \theta \le 2\pi \).
- For the point with polar coordinates \(\displaystyle \left( {7, - \frac{{2\pi }}{3}} \right)\) determine three different sets of coordinates for the same point all of which have angles different from \(\displaystyle - \frac{{2\pi }}{3}\) and are in the range \( - 2\pi \le \theta \le 2\pi \).
- The polar coordinates of a point are \(\left( {14,\,\,2.48} \right)\). Determine the Cartesian coordinates for the point.
- The polar coordinates of a point are \(\left( {\displaystyle - \frac{3}{{10}},\, - 5.29} \right)\). Determine the Cartesian coordinates for the point.
- The Cartesian coordinate of a point are \(\left( { - 3,5} \right)\). Determine a set of polar coordinates for the point.
- The Cartesian coordinate of a point are \(\left( {4, - 7} \right)\). Determine a set of polar coordinates for the point.
- The Cartesian coordinate of a point are \(\left( { - 3, - 12} \right)\). Determine a set of polar coordinates for the point.
For problems 8 and 9 convert the given equation into an equation in terms of polar coordinates.
- \(7{x^2}y + 8y = 3 - 6{x^2} - 6{y^2}\)
- \(\displaystyle \frac{{7y}}{{{x^2} + {y^2} - 8x}} = 9 + {y^2}\)
For problems 10 – 13 convert the given equation into an equation in terms of Cartesian coordinates.
- \(\displaystyle r - \frac{{8\sin \theta }}{r} = 2\cos \theta \)
- \({r^3}\csc \theta = 5\cos \theta - 6\)
- \(8 - r = {r^2}\sin \left( {2\theta } \right)\)
- \(r = 2a\cos \theta + 2b\sin \theta \)
For problems 14 – 27 sketch the graph of the given polar equation.
- \( - 7 = r\sin \theta \)
- \(\displaystyle \theta = \frac{{5\pi }}{7}\)
- \(\displaystyle \theta = - \frac{{9\pi }}{5}\)
- \(r\cos \theta = 4\)
- \(r = 6\sin \theta \)
- \(r = 100\)
- \(r = 24\cos \theta \)
- \(r = - 15\sin \theta \)
- \(r = 4 + 12\cos \theta \)
- \(r = 7 - 7\sin \theta \)
- \(r = 1 + 3\sin \theta \)
- \(r = 5 - 4\cos \theta \)
- \(r = 8 + 3\sin \theta \)
- \(r = 1 - \cos \theta \)