Paul's Online Notes
Paul's Online Notes
Home / Algebra / Polynomial Functions / Finding Zeroes of Polynomials
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 5.4 : Finding Zeroes of Polynomials

2. Find all the zeroes of the following polynomial.

\[P\left( x \right) = {x^4} - 3{x^3} - 5{x^2} + 3x + 4\]

Show All Steps Hide All Steps

Start Solution

We’ll need all the factors of 4 and 1.

\[\begin{align*}4 & : \pm 1, \pm 2, \pm 4\\ 1 & : \pm 1\end{align*}\] Show Step 2

Here is a list of all possible rational zeroes for the polynomial.

\[\frac{{ \pm 1}}{{ \pm 1}} = \pm 1\hspace{0.25in}\frac{{ \pm 2}}{{ \pm 1}} = \pm 2\hspace{0.25in}\frac{{ \pm 4}}{{ \pm 1}} = \pm 4\]

So, we have a total of 6 possible zeroes for the polynomial.

Show Step 3

We now need to start the synthetic division work. We’ll start with the “small” integers first.

\[\,\,\begin{array}{r|rrrrl} {} & 1 & -3 & -5 & 3 & 4 \\ \hline -1 & 1 & -4 & -1 & 4 & 0 =P\left( -1 \right)=0!! \\ \end{array}\]

Okay we now know that \(x = - 1\) is a zero and we can write the polynomial as,

\[P\left( x \right) = {x^4} - 3{x^3} - 5{x^2} + 3x + 4 = \left( {x + 1} \right)\left( {{x^3} - 4{x^2} - x + 4} \right)\] Show Step 4

So, now we need to continue the process using \(Q\left( x \right) = {x^3} - 4{x^2} - x + 4\). The possible zeroes of this polynomial are the same as the original polynomial and so we won’t write them back down.

Here’s the synthetic division work for this \(Q\left( x \right)\) .

\[\begin{array}{r|rrrl} {} & 1 & -4 & -1 & 4 \\ \hline -1 & 1 & -5 & 4 & 0 =Q\left( -1 \right)=0!! \\ \end{array}\]

Therefore, \(x = - 1\) is also a zero of \(Q\left( x \right)\) and the factored form of \(Q\left( x \right)\) is,

\[Q\left( x \right) = {x^3} - 4{x^2} - x + 4 = \left( {x + 1} \right)\left( {{x^2} - 5x + 4} \right)\]

This also means that the factored form of the original polynomial is now,

\[P\left( x \right) = {x^4} - 3{x^3} - 5{x^2} + 3x + 4 = \left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - 5x + 4} \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 5x + 4} \right)\] Show Step 5

We’re down to a quadratic polynomial and so we can and we can just factor this to get the fully factored form of the original polynomial. This is,

\[P\left( x \right) = {x^4} - 3{x^3} - 5{x^2} + 3x + 4 = {\left( {x + 1} \right)^2}\left( {x - 4} \right)\left( {x - 1} \right)\] Show Step 6

From the fully factored form we get the following set of zeroes for the original polynomial.

\[\require{bbox} \bbox[2pt,border:1px solid black]{{x = - 1\,\,\,({\mbox{multiplicity 2}})\hspace{0.25in}\hspace{0.25in}x = 1\hspace{0.25in}\hspace{0.25in}\hspace{0.25in}x = 4}}\]