Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Integration Techniques / Integrals Involving Quadratics
Show Mobile Notice  
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 7.6 : Integrals Involving Quadratics

3. Evaluate the integral 2t+9(t214t+46)52dt2t+9(t214t+46)52dt.

Show All Steps Hide All Steps

Start Solution

The first thing to do is to complete the square (we’ll leave it to you to verify the completing the square details) on the quadratic in the denominator.

2t+9(t214t+46)52dt=2t+9((t7)23)52dt2t+9(t214t+46)52dt=2t+9((t7)23)52dt Show Step 2

From this we can see that the following substitution should work for us.

u=t7du=dt&t=u+7u=t7du=dt&t=u+7

Doing the substitution gives,

2t+9(t214t+46)52dt=2(u+7)+9(u23)52du=2u+23(u23)52du2t+9(t214t+46)52dt=2(u+7)+9(u23)52du=2u+23(u23)52du Show Step 3

Next, we’ll need to split the integral up as follows,

2t+9(t214t+46)52dt=2u(u23)52du+23(u23)52du2t+9(t214t+46)52dt=2u(u23)52du+23(u23)52du

The first integral can be done with the substitution v=u23v=u23 and the second integral will require the trig substitution u=3secθu=3secθ . Here is the substitution work.

2t+9(t214t+46)52dt=v52dv+23(3sec2θ3)52(3secθtanθ)dθ=v52dv+233secθtanθ(3tan2θ)52dθ=v52dv+23secθ9tan4θdθ=v52dv+239cos3θsin4θdθ2t+9(t214t+46)52dt=v52dv+23(3sec2θ3)52(3secθtanθ)dθ=v52dv+233secθtanθ(3tan2θ)52dθ=v52dv+23secθ9tan4θdθ=v52dv+239cos3θsin4θdθ

Now, for the second integral, don’t forget the manipulations we often need to do so we can do these kinds of integrals. If you need some practice on these kinds of integrals go back to the practice problems for the second section of this chapter and work some of them.

Here is the rest of the integration process for this problem.

2t+9(t214t+46)52dt=v52dv+2391sin2θsin4θcosθdθw=sinθ=v52dv+239w4w2dw=23v32+239[13(sinθ)3+(sinθ)1]+c2t+9(t214t+46)52dt=v52dv+2391sin2θsin4θcosθdθw=sinθ=v52dv+239w4w2dw=23v32+239[13(sinθ)3+(sinθ)1]+c Show Step 4

We now need to do quite a bit of back substitution to get the answer back into t’s. Let’s start with the result of the second integration. Converting the θ’s back to u’s will require a quick right triangle.

From the substitution we have,

secθ=u3(=hypadj)

From the right triangle we get,

sinθ=u23u

Plugging this into the integral above gives,

2t+9(t214t+46)52dt=23(u23)3223u327(u23)32+23u9u23+c

Note that we also back substituted for the v in the first term as well and rewrote the first term a little. Finally, all we need to do is back substitute for the u.

2t+9(t214t+46)52dt=23((t7)23)3223(t7)327((t7)23)32+23(t7)9(t7)23+c=23(t7)9(t7)2318+23(t7)327((t7)23)32+c

We’ll leave this solution with a final note about these kinds of problems. They are often very long, messy and there are ample opportunities for mistakes so be careful with these and don’t get into too much of a hurry when working them.