Processing math: 100%
Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Integration Techniques / Integrals Involving Roots
Show Mobile Notice  
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 7.5 : Integrals Involving Roots

3. Evaluate the integral t2t32t4+2dt.

Show All Steps Hide All Steps

Start Solution

The substitution we’ll use here is,

u=2t4 Show Step 2

Now we need to get set up for the substitution. In other words, we need so solve for t and get dt.

t=12u2+2dt=udu Show Step 3

Doing the substitution gives,

t2t32t4+2dt=12u2+2212u2+23u+2(u)du=u3u26u+8du Show Step 4

This integral requires partial fractions to evaluate.

However, we first need to do long division on the integrand since the degree of the numerator (3) is higher than the degree of the denominator (2). This gives,

u3u26u+8=u+6+28u48(u2)(u4)

The form of the partial fraction decomposition on the third term is,

28u48(u2)(u4)=Au2+Bu4

Setting the coefficients equal gives,

28u48=A(u4)+B(u2)

Using the “trick” to get the coefficients gives,

u=4:64=2Bu=2:8=2AA=4B=32

The integral is then,

u3u26u+8du=u+64u2+32u4du=12u2+6u4ln|u2|+32ln|u4|+c Show Step 5

The last step is to now do all the back substitutions to get the final answer.

u3u26u+8du=t2+62t44ln|2t42|+32ln|2t44|+c