Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Integration Techniques / Integration by Parts
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 7.1 : Integration by Parts

8. Evaluate \( \displaystyle \int{{{y^6}\cos \left( {3y} \right)\,dy}}\) .

Show All Steps Hide All Steps

Hint : Doing this with “standard” integration by parts would take a fair amount of time so maybe this would be a good candidate for the “table” method of integration by parts.
Start Solution

Okay, with this problem doing the “standard” method of integration by parts (i.e. picking \(u\) and \(dv\) and using the formula) would take quite a bit of time. So, this looks like a good problem to use the table that we saw in the notes to shorten the process up.

Here is the table for this problem.

\[\begin{array}{rrr} {{y}^{6}} & \cos \left( 3y \right) & + \\ 6{{y}^{5}} & \displaystyle \frac{1}{3}\sin \left( 3y \right) & - \\ 30{{y}^{4}} & \displaystyle -\frac{1}{9}\cos \left( 3y \right) & + \\ 120{{y}^{3}} & \displaystyle -\frac{1}{27}\sin \left( 3y \right) & - \\ 360{{y}^{2}} & \displaystyle \frac{1}{81}\cos \left( 3y \right) & + \\ 720y & \displaystyle \frac{1}{243}\sin \left( 3y \right) & - \\ 720 & \displaystyle -\frac{1}{729}\cos \left( 3y \right) & + \\ 0 & \displaystyle -\frac{1}{2187}\sin \left( 3y \right) & - \\ \end{array}\] Show Step 2

Here’s the integral for this problem,

\[\begin{align*}\int{{{y^6}\cos \left( {3y} \right)\,dy}} & = \left( {{y^6}} \right)\left( {\frac{1}{3}\sin \left( {3y} \right)} \right) - \left( {6{y^5}} \right)\left( { - \frac{1}{9}\cos \left( {3y} \right)} \right) + \left( {30{y^4}} \right)\left( { - \frac{1}{{27}}\sin \left( {3y} \right)} \right)\\ & \,\,\,\,\,\,\,\,\,\,\,\,\, - \left( {120{y^3}} \right)\left( {\frac{1}{{81}}\cos \left( {3y} \right)} \right) + \left( {360{y^2}} \right)\left( {\frac{1}{{243}}\sin \left( {3y} \right)} \right)\\ & \,\,\,\,\,\,\,\,\,\,\,\,\, - \left( {720y} \right)\left( { - \frac{1}{{729}}\cos \left( {3y} \right)} \right) + \left( {720} \right)\left( { - \frac{1}{{2187}}\sin \left( {3y} \right)} \right) + c\\ & = \require{bbox} \bbox[2pt,border:1px solid black]{\begin{align*} & \frac{1}{3}{y^6}\sin \left( {3y} \right) + \frac{2}{3}{y^5}\cos \left( {3y} \right) - \frac{{10}}{9}{y^4}\sin \left( {3y} \right) - \frac{{40}}{{27}}{y^3}\cos \left( {3y} \right)\\ & \hspace{0.5in} + \frac{{40}}{{27}}{y^2}\sin \left( {3y} \right) + \frac{{80}}{{81}}y\cos \left( {3y} \right) - \frac{{80}}{{243}}\sin \left( {3y} \right) + c\end{align*}}\end{align*}\]