Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Series & Sequences / Power Series
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 10.14 : Power Series

1. For the following power series determine the interval and radius of convergence.

\[\sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( { - 3} \right)}^{2 + n}}\left( {{n^2} + 1} \right)}}{{\left( {4x - 12} \right)}^n}} \]

Show All Steps Hide All Steps

Start Solution

Okay, let’s start off with the Ratio Test to get our hands on \(L\).

\[\begin{align*}L & = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{\left( {4x - 12} \right)}^{n + 1}}}}{{{{\left( { - 3} \right)}^{3 + n}}\left( {{{\left( {n + 1} \right)}^2} + 1} \right)}}\frac{{{{\left( { - 3} \right)}^{2 + n}}\left( {{n^2} + 1} \right)}}{{{{\left( {4x - 12} \right)}^n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{\left( {4x - 12} \right)}}{{\left( { - 3} \right)\left( {{{\left( {n + 1} \right)}^2} + 1} \right)}}\frac{{\left( {{n^2} + 1} \right)}}{1}} \right|\\ & = \left| {4x - 12} \right|\mathop {\lim }\limits_{n \to \infty } \frac{{\left( {{n^2} + 1} \right)}}{{3\left( {{{\left( {n + 1} \right)}^2} + 1} \right)}} = \frac{1}{3}\left| {4x - 12} \right|\end{align*}\] Show Step 2

So, we know that the series will converge if,

\[\frac{1}{3}\left| {4x - 12} \right| < 1\hspace{0.25in} \to \hspace{0.25in}\frac{4}{3}\left| {x - 3} \right| < 1\hspace{0.25in} \to \hspace{0.25in}\left| {x - 3} \right| < \frac{3}{4}\] Show Step 3

So, from the previous step we see that the radius of convergence is \(\require{bbox} \bbox[2pt,border:1px solid black]{{R = \frac{3}{4}}}\).

Show Step 4

Now, let’s start working on the interval of convergence. Let’s break up the inequality we got in Step 2.

\[ - \frac{3}{4} < x - 3 < \frac{3}{4}\hspace{0.25in}\hspace{0.25in}\hspace{0.25in} \to \hspace{0.25in}\hspace{0.25in}\frac{9}{4} < x < \frac{{15}}{4}\] Show Step 5

To finalize the interval of convergence we need to check the end points of the inequality from Step 4.

\(\displaystyle x = \frac{9}{4}\,\,\,:\,\,\,\sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( { - 3} \right)}^{2 + n}}\left( {{n^2} + 1} \right)}}{{\left( { - 3} \right)}^n}} = \sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( { - 3} \right)}^2}\left( {{n^2} + 1} \right)}}} = \sum\limits_{n = 0}^\infty {\frac{1}{{9\left( {{n^2} + 1} \right)}}} \)

\(\displaystyle x = \frac{{15}}{4}\,\,\,:\,\,\,\sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( { - 1} \right)}^{2 + n}}{{\left( 3 \right)}^{2 + n}}\left( {{n^2} + 1} \right)}}{{\left( 3 \right)}^n}} = \sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( { - 1} \right)}^{2 + n}}{{\left( 3 \right)}^2}\left( {{n^2} + 1} \right)}}} = \sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^{2 + n}}}}{{9\left( {{n^2} + 1} \right)}}} \)

Now, we can do a quick Comparison Test on the first series to see that it converges and we can do a quick Alternating Series Test on the second series to see that is also converges.

We’ll leave it to you to verify both of these statements.

Show Step 6

The interval of convergence is below and for summary purposes the radius of convergence is also shown.

\[\require{bbox} \bbox[2pt,border:1px solid black]{{{\rm{Interval : }}\frac{9}{4} \le x \le \frac{{15}}{4}}}\hspace{0.25in}\hspace{0.25in}\hspace{0.25in}\require{bbox} \bbox[2pt,border:1px solid black]{{R = \frac{3}{4}}}\]