Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 11.1 : Basic Concepts
2. Give the vector for the line segment from \(\left( {4,5,6} \right)\) to \(\left( {4,6,6} \right)\). Find its magnitude and determine if the vector is a unit vector.
Show All Steps Hide All Steps
Start SolutionWriting down a vector for a line segment is really simple. Just recall that the components of the vector are always the coordinates of the ending point minus the coordinates of the starting point. Always keep in mind that the starting and ending points are important!
Here is the vector for this line segment.
\[\vec v = \left\langle {4 - 4,6 - 5,6 - 6} \right\rangle = \require{bbox} \bbox[2pt,border:1px solid black]{{\left\langle {0,1,0} \right\rangle }}\] Show Step 2To compute the magnitude just recall the formula we gave in the notes. The magnitude of this vector is then,
\[\left\| {\vec v} \right\| = \sqrt {{{\left( 0 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 0 \right)}^2}} = \require{bbox} \bbox[2pt,border:1px solid black]{1}\] Show Step 3Because we can see that \(\left\| {\vec v} \right\| = 1\) we know that this vector is a unit vector.