Section 12.11 : Velocity and Acceleration
1. An objects acceleration is given by →a=3t→i−4e−t→j+12t2→k. The objects initial velocity is →v(0)=→j−3→k and the objects initial position is →r(0)=−5→i+2→j−3→k. Determine the objects velocity and position functions.
Show All Steps Hide All Steps
Start SolutionTo determine the velocity function all we need to do is integrate the acceleration function.
→v(t)=∫3t→i−4e−t→j+12t2→kdt=32t2→i+4e−t→j+4t3→k+→cDon’t forget the “constant” of integration, which in this case is actually the vector →c=c1→i+c2→j+c3→k . To determine the constant of integration all we need is to use the value →v(0) that we were given in the problem statement.
→j−3→k=→v(0)=4→j+c1→i+c2→j+c3→kTo determine the values of c1, c2, and c3 all we need to do is set the various components equal.
→i:0=c1→j:1=4+c2→k:−3=c3⇒c1=0,c2=−3,c3=−3The velocity is then,
\require{bbox} \bbox[2pt,border:1px solid black]{{\vec v\left( t \right) = \frac{3}{2}{t^2}\,\vec i + \left( {4{{\bf{e}}^{ - t}} - 3} \right)\,\vec j + \left( {4{t^3} - 3} \right)\vec k}} Show Step 2The position function is simply the integral of the velocity function we found in the previous step.
\vec r\left( t \right) = \int{{\frac{3}{2}{t^2}\,\vec i + \left( {4{{\bf{e}}^{ - t}} - 3} \right)\,\vec j + \left( {4{t^3} - 3} \right)\vec k\,dt}} = \frac{1}{2}{t^3}\,\vec i + \left( { - 4{{\bf{e}}^{ - t}} - 3t} \right)\,\vec j + \left( {{t^4} - 3t} \right)\vec k + \vec c We’ll use the value of \vec r\left( 0 \right) from the problem statement to determine the value of the constant of integration. - 5\vec i + 2\vec j - 3\vec k = \vec r\left( 0 \right) = - 4\,\vec j + {c_1}\vec i + {c_2}\vec j + {c_3}\vec k \begin{align*} &{\vec i: - 5 = {c_1}}\\& {\vec j:2 = - 4 + {c_2}}\\ &{\vec k: - 3 = {c_3}}\end{align*}\hspace{0.5in} \Rightarrow \hspace{0.25in}{c_1} = - 5,\,\,\,\,{c_2} = 6,\,\,\,\,{c_3} = - 3The position function is then,
\require{bbox} \bbox[2pt,border:1px solid black]{{\vec r\left( t \right) = \left( {\frac{1}{2}{t^3} - 5} \right)\,\vec i + \left( { - 4{{\bf{e}}^{ - t}} - 3t + 6} \right)\,\vec j + \left( {{t^4} - 3t - 3} \right)\vec k}}