Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Integrals / Computing Indefinite Integrals
Show Mobile Notice  
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 5.2 : Computing Indefinite Integrals

For problems 1 – 21 evaluate the given integral.

  1. 4x62x3+7x4dx Solution
  2. z748z115z16dz Solution
  3. 10t3+12t9+4t3dt Solution
  4. w2+10w58dw Solution
  5. 12dy Solution
  6. 3w+105w3dw Solution
  7. x776x5+173x10dx Solution
  8. 4x2+218x3dx Solution
  9. 73y6+1y1023y4dy Solution
  10. (t21)(4+3t)dt Solution
  11. z(z214z)dz Solution
  12. z86z5+4z32z4dz Solution
  13. x43x6xdx Solution
  14. sin(x)+10csc2(x)dx Solution
  15. 2cos(w)sec(w)tan(w)dw Solution
  16. 12+csc(θ)[sin(θ)+csc(θ)]dθ Solution
  17. 4ez+1516zdz Solution
  18. t3et4etdt Solution
  19. 6w32wdw Solution
  20. 11+x2+121x2dx Solution
  21. 6cos(z)+41z2dz Solution
  22. Determine f(x) given that f(x)=12x24x and f(3)=17. Solution
  23. Determine g(z) given that g(z)=3z3+72zez and g(1)=15e. Solution
  24. Determine h(t) given that h, h\left( 1 \right) = - 9 and h\left( { - 2} \right) = - 4. Solution