Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 2.5 : Computing Limits
For problems 1 – 9 evaluate the limit, if it exists.
- \(\mathop {\lim }\limits_{x \to 2} \left( {8 - 3x + 12{x^2}} \right)\) Solution
- \(\displaystyle \mathop {\lim }\limits_{t \to \, - 3} \frac{{6 + 4t}}{{{t^2} + 1}}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{x \to \, - 5} \frac{{{x^2} - 25}}{{{x^2} + 2x - 15}}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{z \to 8} \frac{{2{z^2} - 17z + 8}}{{8 - z}}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{y \to 7} \frac{{{y^2} - 4y - 21}}{{3{y^2} - 17y - 28}}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {6 + h} \right)}^2} - 36}}{h}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{z \to 4} \frac{{\sqrt z - 2}}{{z - 4}}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{x \to \, - 3} \frac{{\sqrt {2x + 22} - 4}}{{x + 3}}\) Solution
- \(\displaystyle \mathop {\lim }\limits_{x \to 0} \frac{x}{{3 - \sqrt {x + 9} }}\) Solution
- Given the function
\[f\left( x \right) = \left\{ {\begin{array}{rc}{7 - 4x}&{x < 1}\\{{x^2} + 2}&{x \ge 1}\end{array}} \right.\]
Evaluate the following limits, if they exist.
- \(\mathop {\lim }\limits_{x \to \, - 6} f\left( x \right)\)
- \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
- Given
\[h\left( z \right) = \left\{ {\begin{array}{rc}{6z}&{z \le - 4}\\{1 - 9z}&{z > - 4}\end{array}} \right.\]
Evaluate the following limits, if they exist.
- \(\mathop {\lim }\limits_{z \to 7} h\left( z \right)\)
- \(\mathop {\lim }\limits_{z \to - 4} h\left( z \right)\)
For problems 12 & 13 evaluate the limit, if it exists.
- \(\mathop {\lim }\limits_{x \to 5} \left( {10 + \left| {x - 5} \right|} \right)\) Solution
- \(\displaystyle \mathop {\lim }\limits_{t \to \, - 1} \frac{{t + 1}}{{\left| {t + 1} \right|}}\) Solution
- Given that \(x^{3}-6x^{2}+12x-3 \le f\left( x \right) \le x^{2}-4x+9\) for \(x \le 3\) determine the value of \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\). Solution
- Use the Squeeze Theorem to determine the value of \(\displaystyle \mathop {\lim }\limits_{x \to 0} {x^4}\sin \left( {\frac{\pi }{x}} \right)\). Solution