Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 5.6 : Definition of the Definite Integral
For problems 1 & 2 use the definition of the definite integral to evaluate the integral. Use the right end point of each interval for \(x_{\,i}^*\).
- \( \displaystyle \int_{1}^{4}{{2x + 3\,dx}}\) Solution
- \( \displaystyle \int_{0}^{1}{{6x\left( {x - 1} \right)\,dx}}\) Solution
- Evaluate : \( \displaystyle \int_{4}^{4}{{\frac{{\cos \left( {{{\bf{e}}^{3x}} + {x^2}} \right)}}{{{x^4} + 1}}\,dx}}\) Solution
For problems 4 & 5 determine the value of the given integral given that \( \displaystyle \int_{6}^{{11}}{{f\left( x \right)\,dx}} = - 7\) and \( \displaystyle \int_{6}^{{11}}{{g\left( x \right)\,dx}} = 24\).
- \( \displaystyle \int_{{11}}^{6}{{9f\left( x \right)\,dx}}\) Solution
- \( \displaystyle \int_{6}^{{11}}{{6g\left( x \right) - 10f\left( x \right)\,dx}}\) Solution
- Determine the value of \( \displaystyle \int_{2}^{9}{{f\left( x \right)\,dx}}\) given that \( \displaystyle \int_{5}^{2}{{f\left( x \right)\,dx}} = 3\) and \( \displaystyle \int_{5}^{9}{{f\left( x \right)\,dx}} = 8\). Solution
- Determine the value of \( \displaystyle \int_{{ - 4}}^{{20}}{{f\left( x \right)\,dx}}\) given that \( \displaystyle \int_{{ - 4}}^{0}{{f\left( x \right)\,dx}} = - 2\), \( \displaystyle \int_{{31}}^{0}{{f\left( x \right)\,dx}} = 19\) and \( \displaystyle \int_{{20}}^{{31}}{{f\left( x \right)\,dx}} = - 21\). Solution
For problems 8 & 9 sketch the graph of the integrand and use the area interpretation of the definite integral to determine the value of the integral.
- \( \displaystyle \int_{1}^{4}{{3x - 2\,dx}}\) Solution
- \( \displaystyle \int_{0}^{5}{{ - 4x\,dx}}\) Solution
For problems 10 – 12 differentiate each of the following integrals with respect to x.