Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Parametric Equations and Polar Coordinates / Tangents with Parametric Equations
Hide Mobile Notice  
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 9.2 : Tangents with Parametric Equations

1. Compute dydx and d2ydx2 for the following set of parametric equations.

x=4t3t2+7ty=t46

Show All Steps Hide All Steps

Start Solution

The first thing we’ll need here are the following two derivatives.

dxdt=12t22t+7dydt=4t3 Show Step 2

The first derivative is then,

\frac{{dy}}{{dx}} = \frac{{\displaystyle \,\,\frac{{dy}}{{dt}}\,\,}}{{\displaystyle \,\,\frac{{dx}}{{dt}}\,\,}} = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{4{t^3}}}{{12{t^2} - 2t + 7}}}} Show Step 3

For the second derivative we’ll now need,

\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{d}{{dt}}\left( {\frac{{4{t^3}}}{{12{t^2} - 2t + 7}}} \right) = \frac{{\left( {12{t^2}} \right)\left( {12{t^2} - 2t + 7} \right) - 4{t^3}\left( {24t - 2} \right)}}{{{{\left( {12{t^2} - 2t + 7} \right)}^2}}} = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{48{t^4} - 16{t^3} + 84{t^2}}}{{{{\left( {12{t^2} - 2t + 7} \right)}^2}}}}} Show Step 4

The second derivative is then,

\frac{{{d^2}y}}{{d{x^2}}} = \frac{{\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right)}}{{\frac{{dx}}{{dt}}}} = \frac{{\frac{{48{t^4} - 16{t^3} + 84{t^2}}}{{{{\left( {12{t^2} - 2t + 7} \right)}^2}}}}}{{12{t^2} - 2t + 7}} = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{48{t^4} - 16{t^3} + 84{t^2}}}{{{{\left( {12{t^2} - 2t + 7} \right)}^3}}}}}