Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 9.2 : Tangents with Parametric Equations
2. Compute \(\frac{{dy}}{{dx}}\) and \(\frac{{{d^2}y}}{{d{x^2}}}\) for the following set of parametric equations.
\[x = {{\bf{e}}^{ - 7t}} + 2\hspace{0.5in}\,\,y = 6{{\bf{e}}^{2t}} + {{\bf{e}}^{ - 3t}} - 4t\]Show All Steps Hide All Steps
Start SolutionThe first thing we’ll need here are the following two derivatives.
\[\frac{{dx}}{{dt}} = - 7{{\bf{e}}^{ - 7t}}\hspace{0.5in}\frac{{dy}}{{dt}} = 12{{\bf{e}}^{2t}} - 3{{\bf{e}}^{ - 3t}} - 4\] Show Step 2The first derivative is then,
\[\frac{{dy}}{{dx}} = \frac{{\displaystyle \,\,\frac{{dy}}{{dt}}\,\,}}{{\displaystyle \,\,\frac{{dx}}{{dt}}\,\,}} = \frac{{12{{\bf{e}}^{2t}} - 3{{\bf{e}}^{ - 3t}} - 4}}{{ - 7{{\bf{e}}^{ - 7t}}}} = \require{bbox} \bbox[2pt,border:1px solid black]{{ - \frac{{12}}{7}{{\bf{e}}^{9t}} + \frac{3}{7}{{\bf{e}}^{4t}} + \frac{4}{7}{{\bf{e}}^{7t}}}}\] Show Step 3For the second derivative we’ll now need,
\[\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{d}{{dt}}\left( { - \frac{{12}}{7}{{\bf{e}}^{9t}} + \frac{3}{7}{{\bf{e}}^{4t}} + \frac{4}{7}{{\bf{e}}^{7t}}} \right) = \require{bbox} \bbox[2pt,border:1px solid black]{{ - \frac{{108}}{7}{{\bf{e}}^{9t}} + \frac{{12}}{7}{{\bf{e}}^{4t}} + 4{{\bf{e}}^{7t}}}}\] Show Step 4The second derivative is then,
\[\frac{{{d^2}y}}{{d{x^2}}} = \frac{{\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right)}}{{\frac{{dx}}{{dt}}}} = \frac{{ - \frac{{108}}{7}{{\bf{e}}^{9t}} + \frac{{12}}{7}{{\bf{e}}^{4t}} + 4{{\bf{e}}^{7t}}}}{{ - 7{{\bf{e}}^{ - 7t}}}} = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{108}}{{49}}{{\bf{e}}^{16t}} - \frac{{12}}{{49}}{{\bf{e}}^{11t}} - \frac{4}{7}{{\bf{e}}^{14t}}}}\]