Section 2.4 : Limit Properties
1. Given \(\mathop {\lim }\limits_{x \to 8} f\left( x \right) = - 9\), \(\mathop {\lim }\limits_{x \to 8} g\left( x \right) = 2\) and \(\mathop {\lim }\limits_{x \to 8} h\left( x \right) = 4\) use the limit properties given in this section to compute each of the following limits. If it is not possible to compute any of the limits clearly explain why not.
- \(\mathop {\lim }\limits_{x \to 8} \left[ {2f\left( x \right) - 12h\left( x \right)} \right]\)
- \(\mathop {\lim }\limits_{x \to 8} \left[ {3h\left( x \right) - 6} \right]\)
- \(\mathop {\lim }\limits_{x \to 8} \left[ {g\left( x \right)h\left( x \right) - f\left( x \right)} \right]\)
- \(\mathop {\lim }\limits_{x \to 8} \left[ {f\left( x \right) - g\left( x \right) + h\left( x \right)} \right]\)
Show All Solutions Hide All Solutions
a \(\mathop {\lim }\limits_{x \to 8} \left[ {2f\left( x \right) - 12h\left( x \right)} \right]\) Show SolutionHere is the work for this limit. At each step the property (or properties) used are listed and note that in some cases the properties may have been used more than once in the indicated step.
\[\begin{alignat*}{3}\mathop {\lim }\limits_{x \to 8} \left[ {2f\left( x \right) - 12h\left( x \right)} \right] & = \mathop {\lim }\limits_{x \to 8} \left[ {2f\left( x \right)} \right] - \mathop {\lim }\limits_{x \to 8} \left[ {12h\left( x \right)} \right] & & \hspace{0.25in}{\mbox{Property 2}} &\\ & = 2\mathop {\lim }\limits_{x \to 8} f\left( x \right) - 12\mathop {\lim }\limits_{x \to 8} h\left( x \right) & & \hspace{0.25in}{\mbox{Property 1}} & \\ & = 2\left( { - 9} \right) - 12\left( 4 \right)& & \hspace{0.25in}{\mbox{Plug in values of limits}} & \\ & = \require{bbox} \bbox[2pt,border:1px solid black]{{ - 66}} & & &\end{alignat*}\]b \(\mathop {\lim }\limits_{x \to 8} \left[ {3h\left( x \right) - 6} \right]\) Show Solution
Here is the work for this limit. At each step the property (or properties) used are listed and note that in some cases the properties may have been used more than once in the indicated step.
\[\begin{alignat*}{3}\mathop {\lim }\limits_{x \to 8} \left[ {3h\left( x \right) - 6} \right] & = \mathop {\lim }\limits_{x \to 8} \left[ {3h\left( x \right)} \right] - \mathop {\lim }\limits_{x \to 8} 6 & & \hspace{0.25in}{\mbox{Property 2}} & \\ & = 3\mathop {\lim }\limits_{x \to 8} h\left( x \right) - \mathop {\lim }\limits_{x \to 8} 6 & & \hspace{0.25in}{\mbox{Property 1}} & \\ & = 3\left( 4 \right) - 6 & & \hspace{0.25in}{\mbox{Plug in value of limits & Property 7}} & \\ & = \require{bbox} \bbox[2pt,border:1px solid black]{6} & & & \end{alignat*}\]c \(\mathop {\lim }\limits_{x \to 8} \left[ {g\left( x \right)h\left( x \right) - f\left( x \right)} \right]\) Show Solution
Here is the work for this limit. At each step the property (or properties) used are listed and note that in some cases the properties may have been used more than once in the indicated step.
\[\begin{alignat*}{3}\mathop {\lim }\limits_{x \to 8} \left[ {g\left( x \right)h\left( x \right) - f\left( x \right)} \right] & = \mathop {\lim }\limits_{x \to 8} \left[ {g\left( x \right)h\left( x \right)} \right] - \mathop {\lim }\limits_{x \to 8} f\left( x \right) & & \hspace{0.25in}{\mbox{Property 2}}\\ & = \left[ {\mathop {\lim }\limits_{x \to 8} g\left( x \right)} \right]\left[ {\mathop {\lim }\limits_{x \to 8} h\left( x \right)} \right] - \mathop {\lim }\limits_{x \to 8} f\left( x \right) & & \hspace{0.25in}{\mbox{Property 3}}\\ & = \left( 2 \right)\left( 4 \right) - \left( { - 9} \right) & & \hspace{0.25in}{\mbox{Plug in values of limits}}\\ & = \require{bbox} \bbox[2pt,border:1px solid black]{{17}} & & & \end{alignat*}\]d \(\mathop {\lim }\limits_{x \to 8} \left[ {f\left( x \right) - g\left( x \right) + h\left( x \right)} \right]\) Show Solution
Here is the work for this limit. At each step the property (or properties) used are listed and note that in some cases the properties may have been used more than once in the indicated step.
\[\begin{alignat*}{3}\mathop {\lim }\limits_{x \to 8} \left[ {f\left( x \right) - g\left( x \right) + h\left( x \right)} \right] & = \mathop {\lim }\limits_{x \to 8} f\left( x \right) - \mathop {\lim }\limits_{x \to 8} g\left( x \right) + \mathop {\lim }\limits_{x \to 8} h\left( x \right) & & \hspace{0.25in}{\mbox{Property 2}}\\ & = - 9 - 2 + 4 & & \hspace{0.25in}{\mbox{Plug in values of limits}}\\ & = \require{bbox} \bbox[2pt,border:1px solid black]{{ - 7}} & & & \end{alignat*}\]