Section 17.2 : Parametric Surfaces
8. Determine the surface area of the portion of x2+y2+z2=25 with z≤0.
Show All Steps Hide All Steps
Start SolutionWe first need to parameterize the sphere and we’ve already done a sphere in this problem set so we won’t go into great detail with the parameterization here.
The parameterization for the full sphere is,
→r(θ,φ)=⟨5sinφcosθ,5sinφsinθ,5cosφ⟩We don’t want the full sphere of course. We only want the lower half of the sphere, i.e. the portion with z≤0. This means that we’ll need to restrict φ to 12π≤φ≤π. Recall that φ is the angle points make with the positive z-axis and because we only want points below the xy-plane we’ll need the range of 12π≤φ≤π.
We want the full lower half and so we’ll use 0≤θ≤2π for our θ range.
Show Step 2Next, we need to compute →rθ×→rφ. Here is that work.
→rθ=⟨−5sinφsinθ,5sinφcosθ,0⟩→rφ=⟨5cosφcosθ,5cosφsinθ,−5sinφ⟩ →rθ×→rφ=|→i→j→k−5sinφsinθ5sinφcosθ05cosφcosθ5cosφsinθ−5sinφ|=−25sin2φcosθ→i−25sinφcosφsin2θ→k−25sinφcosφcos2θ→k−25sin2φsinθ→j=−25sin2φcosθ→i−25sin2φsinθ→j−25sinφcosφ(sin2θ+cos2θ)→k=−25sin2φcosθ→i−25sin2φsinθ→j−25sinφcosφ→kNow, we what we really need is,
‖Note that we can drop the absolute value bars on the sine because we know that sine will be positive in \frac{1}{2}\pi \le \varphi \le \pi .
Show Step 3The integral for the surface area is then,
A = \iint\limits_{D}{{25\sin \varphi \,dA}} = \int_{0}^{{2\pi }}{{\int_{{\frac{1}{2}\pi }}^{\pi }{{25\sin \varphi \,d\varphi }}\,d\theta }}As noted in the integral above D is just the ranges of \theta and \varphi we found in Step 1.
Show Step 4Now we just need to evaluate the integral to get the surface area.
A = \int_{0}^{{2\pi }}{{\int_{{\frac{1}{2}\pi }}^{\pi }{{25\sin \varphi \,d\varphi }}\,d\theta }} = \int_{0}^{{2\pi }}{{\left. { - 25\cos \varphi } \right|_{\frac{1}{2}\pi }^\pi \,d\theta }} = \int_{0}^{{2\pi }}{{25\,d\theta }} = \require{bbox} \bbox[2pt,border:1px solid black]{{50\pi }}