Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 1.1 : Functions
For problems 1 – 4 the given functions perform the indicated function evaluations.
- \(f\left( x \right) = 3 - 5x - 2{x^2} \) Solution
- \(f\left( 4 \right) \)
- \(f\left( 0 \right)\)
- \(f\left( { - 3} \right) \)
- \(f\left( {6 - t} \right) \)
- \(f\left( {7 - 4x} \right)\)
- \(f\left( {x + h} \right) \)
- \(\displaystyle g\left( t \right) = \frac{t}{{2t + 6}} \) Solution
- \(g\left( 0 \right) \)
- \(g\left( { - 3} \right)\)
- \(g\left( {10} \right) \)
- \(g\left( {{x^2}} \right) \)
- \(g\left( {t + h} \right)\)
- \(g\left( {{t^2} - 3t + 1} \right) \)
- \(h\left( z \right) = \sqrt {1 - {z^2}} \) Solution
- \(h\left( 0 \right) \)
- \(h\left( { - \frac{1}{2}} \right)\)
- \(h\left( {\frac{1}{2}} \right) \)
- \(h\left( {9z} \right) \)
- \(h\left( {{z^2} - 2z} \right) \)
- \(h\left( {z + k} \right) \)
- \(\displaystyle R\left( x \right) = \sqrt {3 + x} - \frac{4}{{x + 1}} \) Solution
- \(R\left( 0 \right) \)
- \(R\left( 6 \right)\)
- \(R\left( { - 9} \right) \)
- \(R\left( {x + 1} \right)\)
- \(R\left( {{x^4} - 3} \right)\)
- \(R\left( {\frac{1}{x} - 1} \right) \)
The difference quotient of a function \(f\left( x \right) \) is defined to be,
\[\frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]For problems 5 – 9 compute the difference quotient of the given function.
- \(f\left( x \right) = 4x - 9 \) Solution
- \(g\left( x \right) = 6 - {x^2} \) Solution
- \(f\left( t \right) = 2{t^2} - 3t + 9 \) Solution
- \(\displaystyle y\left( z \right) = \frac{1}{{z + 2}} \) Solution
- \(\displaystyle A\left( t \right) = \frac{{2t}}{{3 - t}} \) Solution
For problems 10 – 17 determine all the roots of the given function.
- \(f\left( x \right) = {x^5} - 4{x^4} - 32{x^3} \) Solution
- \(R\left( y \right) = 12{y^2} + 11y - 5 \) Solution
- \(h\left( t \right) = 18 - 3t - 2{t^2} \) Solution
- \(g\left( x \right) = {x^3} + 7{x^2} - x \) Solution
- \(W\left( x \right) = {x^4} + 6{x^2} - 27 \) Solution
- \(f\left( t \right) = {t^{\frac{5}{3}}} - 7{t^{\frac{4}{3}}} - 8t \) Solution
- \(\displaystyle h\left( z \right) = \frac{z}{{z - 5}} - \frac{4}{{z - 8}} \) Solution
- \(\displaystyle g\left( w \right) = \frac{{2w}}{{w + 1}} + \frac{{w - 4}}{{2w - 3}} \) Solution
For problems 18 – 22 find the domain and range of the given function.
- \(Y\left( t \right) = 3{t^2} - 2t + 1 \) Solution
- \(g\left( z \right) = - {z^2} - 4z + 7 \) Solution
- \(f\left( z \right) = 2 + \sqrt {{z^2} + 1} \) Solution
- \(h\left( y \right) = - 3\sqrt {14 + 3y} \) Solution
- \(M\left( x \right) = 5 - \left| {x + 8} \right| \) Solution
For problems 23 – 32 find the domain of the given function.
- \(\displaystyle f\left( w \right) = \frac{{{w^3} - 3w + 1}}{{12w - 7}} \) Solution
- \(\displaystyle R\left( z \right) = \frac{5}{{{z^3} + 10{z^2} + 9z}} \) Solution
- \(\displaystyle g\left( t \right) = \frac{{6t - {t^3}}}{{7 - t - 4{t^2}}} \) Solution
- \(g\left( x \right) = \sqrt {25 - {x^2}} \) Solution
- \(h\left( x \right) = \sqrt {{x^4} - {x^3} - 20{x^2}} \) Solution
- \(\displaystyle P\left( t \right) = \frac{{5t + 1}}{{\sqrt {{t^3} - {t^2} - 8t} }} \) Solution
- \(f\left( z \right) = \sqrt {z - 1} + \sqrt {z + 6} \) Solution
- \(\displaystyle h\left( y \right) = \sqrt {2y + 9} - \frac{1}{{\sqrt {2 - y} }} \) Solution
- \(\displaystyle A\left( x \right) = \frac{4}{{x - 9}} - \sqrt {{x^2} - 36} \) Solution
- \(Q\left( y \right) = \sqrt {{y^2} + 1} - \sqrt[3]{{1 - y}} \) Solution
For problems 33 – 36 compute \(\left( {f \circ g} \right)\left( x \right) \) and \(\left( {g \circ f} \right)\left( x \right) \) for each of the given pair of functions.
- \(f\left( x \right) = 4x - 1 \), \(g\left( x \right) = \sqrt {6 + 7x} \) Solution
- \(f\left( x \right) = 5x + 2 \), \(g\left( x \right) = {x^2} - 14x \) Solution
- \(f\left( x \right) = {x^2} - 2x + 1 \), \(g\left( x \right) = 8 - 3{x^2} \) Solution
- \(f\left( x \right) = {x^2} + 3 \), \(g\left( x \right) = \sqrt {5 + {x^2}} \) Solution